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Soil Salinity Mapping by Multiscale Remote
Sensing in Mesopotamia, Iraq

Weicheng Wu, Waleed M. Al-Shafie, Ahmad S. Mhaimeed, Feras Ziadat, Vinay Nangia, and William Bill Payne

Abstract—Soil salinity has become one of the major problems
affecting crop production and food security in Mesopotamia, Iraq.
There is a pressing need to quantify and map the spatial extent and
distribution of salinity in the country in order to provide relevant
references for the central and local governments to plan sustain-
able land use and agricultural development. The aim of this study
was to conduct such quantification and mapping in Mesopotamia
using an integrated, multiscale modeling approach that relies
on remote sensing. A multiyear, multiresolution, and multisen-
sor dataset composed of mainly Landsat ETM+ and MODIS data
of the period 2009–2012 was used. Results show that the local-
scale salinity models developed from pilot sites with vegetated and
nonvegetated areas can reliably predict salinity. Salinity maps pro-
duced by these models have a high accuracy of about 82.5–83.3%
against the ground measurements. Regional salinity models devel-
oped using integrated samples from all pilot sites could predict
soil salinity with an accuracy of 80% based on comparison to
regional measurements along two transects. It is hence concluded
that the multiscale models are reasonably reliable for assessment
of soil salinity at local and regional scales. The methodology
proposed in this paper can minimize problems induced by crop
rotation, fallowing, and soil moisture content, and has clear advan-
tages over other mapping approaches. Further testing is needed
while extending the mapping approaches and models to other
salinity-affected environments.

Index Terms—Multiscale remote sensing, multiyear maxima,
new processing algorithm, salinity models, soil salinity.

I. INTRODUCTION

A PPROXIMATELY, 60% of the cultivated land in the
Mesopotamian plain in Iraq is seriously affected by salin-

ity [1]; 20–30% has been abandoned in the past 4000 years [1],
[2]. Because of soil salinity, yield of crops, especially, wheat
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of nonabandoned has declined by 20–50% by 1950s [2]. But
the severity and distribution of soil salinity varies with space
and time [2]–[4]. In order to prioritize any remediation effort
and better plan for agricultural improvements and food security,
it is of prime importance for Iraqi central and local govern-
ments to understand the distribution and severity of salinity in
Mesopotamia.

Soil salinity is a common form of land degradation in
irrigated areas located in dryland environments [5]–[8]. The
physical appearance of salinity is strongly influenced by soil
properties (e.g., moisture, texture, mineral composition, and
surface roughness) as well as type of vegetation cover (e.g.,
halophyte and nonhalophyte, salt-tolerant and nonsalt-tolerant)
[5]–[8]. Remote sensing has been widely applied for mapping
and assessment of soil salinity in recent decades using veg-
etation indices (VIs) and combined spectral response index
(COSRI) [9]–[16], best band combination [17], [18], maximum
likelihood and fuzzy logic-based classifications [19]–[23], prin-
cipal component analysis (PCA), surface feature unmixing, and
data fusion [6], [7], [24]. Predictive models have been devel-
oped for soil salinity using different regression analysis, artifi-
cial neural network (ANN), and Kriging/CoKriging techniques
[9]–[16], [18], [24]–[26]. Very recently, along with vegetation
indices and reflectance of certain spectral bands, evapotranspi-
ration (ET) and land surface temperature (LST) have been used
to predict salinity in salt-affected areas [16], [27]–[29].

While these and other studies demonstrate the feasibility,
advantages, and potential of remote sensing to assess soil salin-
ity, there remain certain challenges. First, although in strongly
salinized areas, salt tends to concentrate on terrain surfaces
and can be easily detected by conventional remote sensing
tools; however, for low-to-moderate salinity (salt<10−15%),
spectral confusions with other different surface features may
arise leading to identification failure (either overestimation or
underestimation) [6], [7]; especially, when salt concentrates in
subsoil, optical remote sensing is restricted [8]. Second, soil
moisture, halophyte vegetation, and salt-tolerant crops such
as barley, cotton, and alfalfa can modify the overall spectral
response pattern of salt-affected soils, especially in the green
and red bands [6], [7], [30]. Third, lands in the states of fal-
low, noncrop interval in-between rotations, and crop rotations
tend to be interpreted as salinized areas if only soil bareness or
vegetation greenness of a single image is investigated. To avoid
these problems, some authors have suggested: 1) to use images
acquired at the end of dry or hot season or of multiple cropping
periods [7], [8], 2) to conduct regression analysis against VIs
[9]–[16] and geophysical measurement [8] in combination with
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soil sampling and analysis. These are, no doubt, useful sugges-
tions to minimize the mentioned problems and accomplish a
better mapping work. However, most of the available studies
have employed single or multidate single images to assess salin-
ity at local scale, and their approaches are not fully repeatable
or extendable for regional-scale assessment due to spatial vari-
ability and diversity in climate conditions, soil properties, and
land use/management. It is, therefore, essential to develop new
processing methods and approaches technically operational for
regional-scale salinity mapping.

The main objectives of this study are, hence, to develop an
integrated methodology operational for regional salinity quan-
tification and assessment based on the available approaches
considering the above-mentioned problematic issues, to pro-
vide relevant multiscale salinity maps for Iraqi governments,
and finally, to lay a foundation for the successive regional-scale
tracking of salinity change trends in space and time that may
provide spatial reference for the governments to understand
the impacts of land management on salinization processes in
Mesopotamia.

As well as for salinity assessment, remote sensing technol-
ogy has also been widely applied in other dryland research.
Some scientists have utilized annual maximum (peak) VIs
such as Normalized Difference Vegetation Index (NDVI) [31]
to compose cloud-free NDVI [32]–[35] for assessing dryland
biomass [33]–[35] and land degradation [35]–[37] in the past
decades. Others have used multiyear maximum (peak) and min-
imum (trough) NDVI and LST to derive vegetation condition
index (VCI) and temperature condition index (TCI) for mon-
itoring droughts [38]–[40]. Clearly, annual maximum VI, if
applied to salinity assessment, can resolve the problems related
to cloud-cover and crop rotation (crops cultivated either in
spring or summer) but cannot remove that resulted from fal-
low state which may last a couple of years. However, multiyear
maximum, if the observation period spans 3–4 years, can min-
imize (if cannot completely resolve) these problems. LST is
associated with soil moisture and water content [41]–[44], and
high LST is related to low moisture [44]. Thus, multiyear max-
imal LST is a promising indicator to minimize the problem
related to soil moisture.

Additionally, remote sensing-based multiscale modeling has
gained a momentum in regional, continental or even global
scale application [34], [45], [46] to extend plot measurements to
local-scale (e.g., pilot site or watershed), and then to regional-
or continental-scale [34], [46]. As Farifteh et al. [8] and Wu
et al. [34] explained, such multiscale modeling is in fact an
upscaling procedure to extend models developed from local
studies to regional-scale assessment considering the spatial
variability.

From the above brief review, we reached an understanding
that regional salinity mapping and assessment require inte-
grated approaches which consider multidimensional (or mul-
tiaspect) observation and analysis from surface (e.g., vegetated
and nonvegetated areas) to subsoil (within a limited depth of,
e.g., <150 cm), and from multiple biophysical characterization
to traditional soil sampling. We propose, hence, in this paper a
“multiyear maxima and multiscale modeling” methodology for
salinity quantification in Mesopotamia, Iraq.

II. MATERIALS AND METHODS

A. Study Area

Mesopotamia, “the land between rivers” in ancient Greek and
encompassing a surface area of about 135 000 km2, is a typ-
ical alluvial plain between the two famous rivers, Euphrates
and Tigris (Fig. 1) and the home of multiple ancient civiliza-
tions namley Sumerian, Akkadian, Babylonian, and Assyrian
[4]. As an arid subtropical region, the climate is characterized
by dry hot summers and cooler winters [2], [3], [29], where
annual rainfall is mostly below 200 mm, of which the average
is 110 mm in Baghdad and 149 mm in Basrah in the past three
decades. The mean maximum and minimum temperatures are
44◦C and 25.6◦C, respectively, in Baghdad, 46◦C and 29.15◦C
in Basrah in July–August, whereas they are 16.5◦C and 4.8◦C
in Baghdad, 19◦C and 8.4◦C in Basrah in December–January.

As a fluviatile plain, soils are extremely calcareous (20–30%
lime) alluvial silty loam or loamy silts [2], [3], typical
Fluvisols in terms of WRB (the World Reference Base for
Soil Resources), and mostly saline as a result of cumula-
tive salinization in the past 6000 years [2]–[4]. Archeological
evidence revealed that crop cultivation (e.g., wheat and bar-
ley) was started as early as 4000 BC in Mesopotamia [2],
[4]. Due to aridity, farming is impossible if not irrigated.
Irrigation increases soil moisture and crop production, nonethe-
less, leads to elevation of water-table or water-logging in the
area where there is no drainage or draining is slow [2]–[4].
Consequently, salts accumulate in soils after evaporation and
transpiration year by year. According to Jacobsen and Adams
[4], salinity had already become a serious hazard in south-
ern Mesopotamia in the late Sumerian or early Akkadian
periods, e.g., around 2400–2300 BC, and led to a decline
in wheat production. The proportions of wheat and barley
were nearly equal in about 3500 BC but became 1 to 6
in 2400 BC in Girsu (nowadays Thi-Qar); wheat cultivation
was completely abandoned after 1700 BC and land produc-
tivity declined from 2537 l/ha before 2400 BC to 897 l/ha in
1700 BC in Larsa (also in Thi-Qar) as a consequence of salin-
ization. Salinity is hence an old problem that contributed to
the breakup of ancient civilization [4]. Unfortunately, saliniza-
tion has never stopped but progressively extended to the whole
Mesopotamian plain to the state as described in the beginning
of the paper.

As Buringh investigated [2], the most common salt in
saline soils is sodium chloride (NaCl) followed by other
chlorides (e.g., CaCl2, MgCl2, and KCl), and sulfates (e.g.,
CaSO4·2H2O, Na2SO4.10H2O, and MgSO4). Saline-alkaline
soils may exist locally but real alkali soils (in black) are very
scarce in Mesopotamia.

B. Field Sampling Design and Data

To achieve our objectives, comprehensive observations and
measurements at different scales are required. The experi-
ment was hence designed to be conducted at three levels, i.e.,
plot, local (pilot site), and regional scales, corresponding to
the proposed multiscale approach. Both local (pilot site)- and
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Fig. 1. Location of the five pilot sites and the whole study area, Mesopotamia, in Iraq.

regional-scale surveys were composed of plot level investiga-
tion and measurements.

Plot level survey included land use/cover investigation, crop
types and performance observation (if possible), soil sampling,
and apparent salinity measurement using a ground conductiv-
ity meter, EM38-MK2 (Geonics Ltd.), in an area of 1 m × 1 m.
EM38 meter is capable to measure the apparent soil salinity
in both horizontal (with a measurement depth up to 50 cm)
and vertical (up to 150 cm) directions, of which the read-
ings can be respectively denoted as EMH (horizontal) and
EMV (vertical) in millisiemens per meter (mS/m). Hence,
EM38 meter can reveal salinity of both surface and subsoil.
However, the apparent salinity has to be calibrated by labora-
tory measured soil salinity. The false salinity caused by metal
and/or soil moisture should be avoided while measurement is
conducted.

In order to be comparable with the pixels of high-resolution
satellite images such as Landsat and SPOT (e.g., 10–30 m), the
survey was planned to be conducted in three plots distributed
at three corners of a triangle, respectively, with a distance of
about 15–20 m from each other in the same patch of land. The
averaged values of the EM38 readings including both EMV and
EMH of the three corner plots would be taken to represent the
salinity of the center of the observed triangle. Soil samples for
laboratory chemical analysis were to be taken from soil profiles
at the depth of 0–30, 50–70, 90–110 and 120–150 cm, and from
surface (0–30 cm in depth) using auger tools in the plots where
EM38 was also measured.

Pilot site level survey was to serve for integrated pilot
study, e.g., salinity model development and mapping at local
scale. As recommended by the Iraqi government, five sites
namely Musaib, Dujaila, West Gharraf, Shat-Al-Arab, and Abu
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Fig. 2. Distribution of the sampling points for modeling and validation.

Khaseeb in the Mesopotamian plain (see Figs. 1 and 2 for loca-
tion) were selected for pilot studies. It was planned that each
pilot site should contain >5 soil profiles and >20 triangles of
plots for surface survey if accessibility allowed.

Regional survey, which was aimed at salinity model devel-
opment and validation at regional-scale, was to be conducted
along two transects in the whole Mesopotamian Plain.

Based on the above design, field survey and sampling cam-
paigns were conducted in the five pilot sites in the period
September 2011–July 2012 and along two regional transects
in Mesopotamia in April 2012 and June 2013. The sampling
locations for plot level survey both in pilot sites and along
the regional transects were randomly selected in the field in
terms of accessibility. Due to limited budget, surface soil sam-
ples were not taken in each plot but at least in one of the three
corners. Soil salinity, expressed as electrical conductivity (EC)
in decisiemens per meter (dS/m), was measured in laboratory
using 1:1 dilution method. In total, 187 surface soil samples
(0–30 cm) with laboratory analysis and 485 pairs of EM38
measurements were obtained for this study. Sites, depths, and
numbers of sampling are described in Table I.

In order to extend plot level measurements to pilot site, and
then to regional-scale salinity mapping, a multiyear dataset
consisting of multiresolution and multisensor satellite imagery
was prepared based on the availability of images. This dataset
includes 33 spring (February–April) and summer (August)
Landsat ETM+ images of the period 2009–2012, four SPOT 4
images acquired in March 2010, and three RapidEye images
dated April 2012, time-series of MODIS vegetation indices
data (MOD13Q1), and LST (MOD11A1 and A2) from 2009
to 2012.

C. Local-Scale Modeling and Mapping

As indicated in Section I, apart from the geophysical survey
by EM38 meter to understand salinity in surface and subsoil,

different remote sensing indicators that can characterize the
multiaspect surface biophysical features, e.g., VIs, LST, soil
brightness (albedo), and principal components (PCs), need to
be derived.

Instead of using one single image, a 4-year imagery dataset
registered both spring and summer acquisitions, which was
used to derive the multiyear maximal values of a set of VIs and
nonvegetation indices (NonVIs) for each pixel. This would help
avoiding some false alarm of salinity arising from fallowing,
crop rotation, and variation in soil moisture. This processing
can also largely remove the problem caused by the image gaps
left by the Scan-Line Corrector failure (SLC-Off) in the Landsat
ETM+ imagery since 2003. We assumed that it is always possi-
ble for a given piece of cropland to be cultivated in either spring
or summer with normal performance in the observed period
because fallow state lasts, in general, 2–3 years in Central and
Southern Iraq.

Image processing in combination with field survey would
allow the identification of the salt-tolerant areas, and the con-
centration of salt in subsoil, for example, areas with high
vegetation greenness but moderate salinity as revealed by the
readings of EM 38 or as measured by soil laboratory analy-
sis. Such areas have to be defined for a specific analysis since
salinity cannot be reflected by vegetation indices.

Furthermore, it is essential to separate vegetated and non-
vegetated areas, as the expression of salinity in remote sensing
images is different in these two types of areas. For exam-
ple, the low values of VIs in nonvegetated areas (e.g., bare
soil and desert) do not mean that they are all strongly salin-
ized (high salinity). As a matter of fact, salinity is negatively
correlated with VIs such as NDVI [11], [13], [28], [29], and
it tends to be overestimated in the nonvegetated areas just
based on VI-related models. We have to consider the inte-
grated information from multiple spectral and thermal bands,
e.g., spectral reflectance, LST, PCs, and the brightness of
the Tasseled Cap transformation (TCB) [47]–[49], for salin-
ity assessment in these areas. The rationale behind is that
the spectral reflectance and its multiband linear combination
(e.g., TCB and PCs) together with LST might be able to
highlight the subtle difference in soil brightness (or albedo)
corresponding to the difference in salinity in the nonvegetated
areas.

The procedure for local-scale study in the pilot sites is
presented as follows.

1) Atmospheric correction using FLAASH model [50] for all
Landsat ETM+, SPOT, and RapidEye images.

2) Multispectral transformation: A set of most frequently
applied VIs such as NDVI [31], SAVI (soil-adjusted
vegetation index) [51], SARVI (soil-adjusted and atmo-
spherically resistant vegetation index) [52], and EVI
(enhanced vegetation index) [53] were produced from
the atmospherically corrected and reflectance-based satel-
lite imagery. We also introduced a new vegetation index
in this work, the generalized difference vegetation index
(GDVI) developed by Wu [54] and in the form of

GDVI = (ρnNIR − ρnR)/(ρ
n
NIR + ρn

n

R ) (1)



4446 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 11, NOVEMBER 2014

TABLE I
LOCATION, DEPTH, AND NUMBER OF SOIL SAMPLES AND EM38 MEASUREMENTS

where ρNIR is the reflectance of the near-infrared band
and ρR is that of the red band, and n is the power, an inte-
ger from 1 to n. When n = 1, GDVI = NDVI. As Wu
concluded [54], when n = 2, GDVI is better correlated
with LAI (leaf area index) in all biomes, and more sensi-
tive to low vegetal biomes than other vegetation indices.
However, with the increase of n (e.g., n = 3 and 4),
GDVI becomes saturated and insensitive to densely veg-
etated areas (e.g., wheat cropland, forest). High-power
GDVI is thence only relevant for application in sparsely
vegetated dryland biomes (such as rangeland and wood-
land). Our earlier studies show that GDVI is a powerful
salinity indicator [28], [29], [55]. We applied this index
(n = 2) together with others in soil salinity modeling and
mapping in this study.
Regarding NonVIs, as well as NDII (normalized differ-
ence infrared index) [56], TCB, PC1, and PC2, LST were
derived from Landsat ETM+ images.

3) Derivation of the multiyear maxima of VI and nonVI
images: An algorithm using IDL language was designed
for this purpose. The multiyear maxima of VIs and
NonVIs of the period of 2009–2012 were derived for each
pixel in all pilot sites. For NonVIs, multiyear spring max-
ima, i.e., the maxima during the crop growing period from
February 01 to April 15 (note: barley is harvested in the
end of April) were also produced.
We have to mention that SPOT and RapidEye images
do not contain any thermal band to derive LST and thus
cannot be individually used for salinity modeling in our
study. After resampling the pixels to 30 m, their VIs
(NDVI, SAVI, and GDVI) and NonVIs (PC1 and PC2)
were integrated into those of Landsat ETM+ to derive the
maxima of VIs and NonVIs in each pixel.

4) Extraction of the maxima of each VI and nonVI corre-
sponding to the field sampling locations: Both maximal
images of VIs and NonVIs were converted into TIF for-
mat, and imported into ArcGIS to extract the maximal
values corresponding to each sampling plot location.

5) Division of the vegetated and nonvegetated areas:
A thresholding technique was applied to the

multiyear-maximal NDVI to determine the thresh-
old for division of the vegetated and nonvegetated areas
followed by a mask operation.

6) Linking multiyear maxima with plot-scale measurements:
The extracted maxima of VIs and NonVIs were cou-
pled with their correspondingly averaged plot-level EM38
readings or laboratory-measured soil electrical conductiv-
ity using SYSTAT, a software for statistical analysis and
modeling, for salinity model development using multi-
ple linear regression analysis at the confidence level of
95%. A positive correlation between salinity and LST,
PCs and TCB, and a negative correlation between salin-
ity and different VIs, especially GDVI and NDVI, were
observed.
Two types of salinity models were obtained: a) spe-
cific salinity models for vegetated and nonvegetated areas
resulted from multiple linear regression modeling that
was applied to two groups of samples located in vege-
tated and nonvegetated areas and b) integrated salinity
models in which all samples in the same pilot site were
input for modeling but vegetated and nonvegetated areas
were separately treated.

7) Evaluation and application of the salinity models: To
understand whether the models obtained are operational,
the specific and integrated models were, respectively,
applied back to the maxima of VIs and NonVIs of the
period 2009–2012 to produce local-scale salinity maps.
These maps were evaluated against the ground-measured
data by linear regression model [29], [34]. If the agree-
ment between the measured and predicted salinity is
≥80%, the models developed are considered operational
at local-scale and the salinity maps are reliable.

D. Regional-Scale Mapping

1) Regional-scale modeling: Models obtained from any
pilot site cannot be directly applied to regional-scale
salinity mapping due to lack of spatial representative-
ness. That is why we proposed here a “multiscale
modeling” approach to upscale plot-level measurements
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TABLE II
SALINITY MODELS FOR THE PILOT SITES AND THE WHOLE MESOPOTAMIA

Note: EMV and EMH can be converted into EC (dS/m) from the regional transect sampling, i.e., EC = 0.0005EM2
V − 0.0779EMV + 12.655 (R2 =

0.8505); and EC = 0.0002EM2
H + 0.0956EMH + 0.0688 (R2 = 0.7911).

and high-resolution-derived models to regional-scale
assessment. To do so, the data from different pilot sites,
which are situated in different locations in Mesopotamia
(Fig. 2), were integrated together for regional-scale mod-
eling using the same multiple regression model.

2) Upscaling test and regional salinity mapping: Since we
will use MODIS data (VIs and LST) for regional salinity
mapping, it is still not clear whether the models devel-
oped from high-resolution data (e.g., Landsat and SPOT)
are applicable to MODIS data. For this reason, the best
salinity indicators as revealed in the previous steps, the
multiyear maxima of GDVI, and the LST maxima of the
crop growing period from February to April in 2009–
2012 (of the frame 168-37) were linked, respectively, to
the multiyear maxima of MODIS GDVI (calculated from
MOD13Q1), and the maximal LST (MOD11A2) of the
same period after resolution degradation of the Landsat
data from 30 to 250 m and upgrading of LST data from
1000 m to 250 m. This processing was aimed at minimiz-
ing the information loss or unrealistic improvement [54].
1000 random points covering all land cover types such
as barelands (deserts, bare soils, and bare rocks), saline
soils, urban areas, rangeland, and croplands were gener-
ated. By removing those falling in roads and swamps, it
was found that Landsat GDVI (GDVIL) is strongly corre-
lated with MODIS GDVI (GDVIM) [R2 = 0.839 in (2)],
and the same was obtained for Landsat LST and MODIS
LST [R2 = 0.795 in (3)]

GDVIM = 0.7837GDVIL + 0.1665 or GDVIL

= (GDVIM − 0.1665)/0.7837 (2)

LSTM = 0.7054LSTL + 90.496 or LSTL

= (LSTM − 90.496)/0.7054 (3)

Therefore, with relevant adjustment of MODIS GDVI and
LST in line with (2) and (3), regional models developed
from high resolution Landsat data are applicable to the
adjusted MODIS data for regional salinity mapping.

For such upscaling test, one may also propose the same
random processing for multiple Landsat scenes against
MODIS data to get the average to evaluate the extendabil-
ity. Since the land cover types are the same in the region,
the results should be more or less similar to what we have
obtained.

3) Validation: The regional salinity map derived from the
MODIS data was evaluated against the field samples from
two regional transects (blue points in Fig. 2) to check its
reliability and accuracy.

III. RESULTS AND DISCUSSION

After the above processing, both local- and regional-scale
salinity models obtained are listed in Table II, and local-scale
and regional-scale salinity maps are presented in Figs. 3 and 4
for discussion.

A. Salinity Models and Maps

As our test revealed in the Dujaila site [29], specific models
for vegetated and nonvegetated areas were not recommended
for salinity mapping due to their low reliability (e.g., < 37%).
Thus, what are presented in Table II are the integrated mod-
els taking all the samples into account, whereas vegetated and
nonvegetated areas were separated during the multiple linear
regression analysis in each pilot site. We see that among all
the VIs, GDVI or its variant such as ln(GDVI) is the most rep-
resentative indicator for vegetated areas, and LST (and NDII)
for nonvegetated areas in all pilot sites. By the way, for sites
Shat-Al-Arab and Abu Khaseeb, independent models were
not developed due to limited soil sample number (8 and 5,
respectively).

It is also noted that the salinity models obtained are different
from each other in all pilot sites; none of them can be directly
extended to regional-scale mapping due to spatial variability.
However, these models can reliably predict soil salinity with
an accuracy of about 82.57% in Dujaila and 83.01% in Musaib
against the field measured data. Hence, they were considered
operational for their respective pilot sites.
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Fig. 3. Salinity of the pilot sites: (a) Musaib and (b) Dujaila.

Fig. 4. Present-state salinity map of Mesopotamia (expressed in EC classes as required by users).

For the regional-scale models, the multiple correlation coef-
ficients R2 are relatively lower than those in pilot sites due to
homogenization of samples from different pilot sites after inte-
gration; nonetheless, they have higher applicability in regional-
scale mapping.

It is worth mentioning that most of the EM38 measurements
in spring (March–April) 2012 did not show any promising cor-
relation with VIs except for the Dujaila site perhaps due to
the problem of soil moisture after rainfall or irrigation while
measurements were undertaken in the field. For this reason, a
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Fig. 5. Agreement of the remote sensing-predicted salinity (ECRS) versus
field-measured salinity (ECLab).

supplemental sampling campaign was carried out in the dry
season after crops harvesting (June–July 2012). These EM38
readings show a good correlation with the multiyear maximal
VIs and NonVIs in all pilot sites and were used for develop-
ing salinity models by multiple linear regression analysis. NDII
and LST are of both vegetation and nonvegetation characters,
and were included in the integrated salinity modeling for both
vegetated and nonvegetated areas.

The local salinity maps of the present-state taking the sites
Musaib and Dujaila as an example [Fig. 3(a) and (b)] are in a
good agreement with ground data (R2 = 0.830 in Musaib, and
0.826 in Dujaila). We consider that these maps are reliable.

As for the regional salinity map (Fig. 4), the accuracy evalu-
ation revealed that 23 of the 121 regional samples taken along
two transects and the surface EC of 27 soil profiles in pilot sites
that were not used for modeling were abnormal due to inter-
nal problem of samples, most probably, derived from laboratory
analysis (because the correlation among Cl−, Na+, and EC is
very low, e.g., R2 = 0.047); however, the remaining 98 samples
show a good accordance with remote sensing predicted salinity.
The observation accuracy is 80.9%, and the statistical accuracy
of the regional salinity map obtained by linear regression analy-
sis at the confidence level of 95% is 80.02% (Fig. 5). Therefore,
the regional map presented in Fig. 4 was considered reliable.

The agreement between the measured and remote sensing
predicted salinity as shown in Fig. 5 is higher in the high salin-
ity part than low salinity one. This is probably due to the fact
that coarse-resolution LST has lower sensitivity to low salin-
ity. An overestimation of about 2–10 dS/m may occur in some
places in the weakly salinized areas. However, the sensitivity
to low salinity can be improved if high resolution LST data are
available.

One may have concern about the reasonability to use soil
surface temperature, LST, as salinity indicator which was
finally retained in the models for the nonvegetated areas. As
Wu et al. [29] argued, it is commonly known that thermal
conductivity of materials is temperature (T )-dependent, and
the former is associated with electrical conductivity (EC).

However, the interrelationship between the thermal and
electrical conductivities is complex and may change signifi-
cantly depending on materials, e.g., soil types. Some authors
[5]–[7] have explored the possibility to use the thermal band
to identify the salt-affected soils but they have not discussed
the mechanism behind. Abu-Hamdeh and Reeder [57] ascer-
tained the relationship between thermal conductivity and salin-
ity, and found that thermal conductivity decreases with the
increase in the amount of added salts at given moisture content.
Sepaskhah and Boersma [58] found that the apparent thermal
conductivity is independent of water content at very low water
contents. Consequently, in driest condition (at lowest moisture
or water content), thermal conductivity is associated with the
salt amount—salinity. We believe, therefore, that LST-based
models are relevant for mapping salinity in nonvegetated areas.

Concern may also be addressed on the applicability of the
models. It is clear that the models obtained from pilot sites
are not recommended for direct application to similar areas for
salinity mapping without relevant adaptation. Of higher repre-
sentativeness, the regional-scale models can be disseminated to
the similar environment for this purpose.

B. Assessment of the Integrated Processing Approach

Different from the other authors (e.g., [10], [17], and [18]),
we used multiyear imagery dataset to derive the multiyear
maxima of VIs and NonVIs for multiscale salinity model-
ing followed with an upscaling analysis. The above-mentioned
problematic issues that are commonly faced in salinity mapping
by remote sensing were successfully minimized, and salinity
maps with high reliability were produced.

Despite a number of authors [10], [17] have conducted salin-
ity mapping and best band combination studies, but they used
single or multiple single images and did not differently treat the
vegetated and nonvegetated areas. Especially, authors [17] did
not take into account the nonvegetated area. Their approaches
cannot avoid the influences from crop rotation/fallow, and
moisture, which are often problematic in large area (or scale)
mapping. Hence, our approach has evident advantages over and
its uniqueness different from others.

However, some imperfection was also noted. As a matter
of fact, salinity has strong spatial variability; even in a small
1× 1 m2 plot, salinity may change after each 20–30 cm inter-
val, not to mention in the 250 m pixels of MODIS data which
were used for regional-scale mapping in this study. That is to
say, it is unlikely to produce a regional salinity map with an
accuracy of 2–3 dS/m based on the proposed methodology.
What can be done is to approach the reality as much as possible
by increasing the sampling number and density with a relevant
spatial distribution if both time and fund are available.

C. Problems Confronted

Though great efforts have been made, problem related to salt-
tolerant vegetation has not been completely resolved yet. In the
pilot sites, field sampling was well conducted and halophytes
were noted. But in other areas where sampling was not covered,
salinity may have been underestimated as salt-tolerant crops
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such as barley or other halophyte vegetation were not identified
out for specific analysis. As was revealed by the experiment
[3], barley has a rather strong resistance to salinity, and can
still grow well with good production (1.68–1.84 tons/ha) in the
field where soil salinity reaches 8–16 dS/m if fertilizer (e.g.,
nitrogen) is given.

The second issue is related to swamps and their surroundings,
e.g., in the governorates of Thi-Qar and Basrah of Southern Iraq
(Fig. 1). Moisture is almost a permanent problem for salinity
mapping in these areas. Swamps can be excluded out for any
salinity analysis but their surroundings are mostly moist veg-
etated area (locally cropland but mostly halophytes). In this
mapping work, we tried to find the transitional part between
moist (>345 dS/m, the false salinity as LST model loses its
sensitivity with increase of moisture) and nonmoist zones
(<345 dS/m), and then treated the moist part as normal water
body or swamp.

The third problematic issue is related to bareland. Due to
security reasons, a number of sampling plots designed in the
nonvegetated areas were not accessible. There were not enough
samples from bare soil for model development and salinity map
validation. Thus both salinity models and maps of the non-
vegetated areas should be improved when security condition
improves and more field data become available.

IV. CONCLUSION

In spite of challenges, this study demonstrates the possibility
to map and quantify the spatial distribution of the salt-affected
land at regional-level based on the development of local- and
regional-scale salinity models in Mesopotamia, Iraq. The val-
idated maps we produced can be tentatively provided as a
reference to decision-makers for facilitating their future land
use planning in Mesopotamia. The proposed method can mini-
mize the problems related to crop rotation/fallow practices, and
soil moisture, and hence is different from other approaches. The
models can be applied for multitemporal salinity mapping to
track the temporal and spatial changes in the Mesopotamian
plain and even in the whole country.

However, one weak point is noted, i.e., the approach can-
not completely remove the influence from salt-tolerant crops
such as barley, alfalfa, and cotton in the areas where no field
survey was conducted. In addition, coarse resolution LST data
(1000 m) is really not ideal for such quantification as spatial
variability of salinity has been greatly homogenized. Merely,
these issues can be sorted out or improved when new thermal
data with higher resolution (e.g., 60–250 m) are available, and
field accessibility is improved.

In future work, as mentioned in the introduction, ET, as one
of the indicators, can be taken into account together with others.
In this way, remote sensing-based salinity models will be more
comprehensive and relevant for both local- and regional-scale
assessments.
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